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Abstract

This paper describes the steady-state chemical performance of catalytic surfaces of similar constitution but of varied global curvature
exposed to two distinct chemical species which are allowed to adsorb, desorb, diffuse and react on the surface. The surface reactions are
modeled to include the presence of defect structures which exist due to lattice faults and/or foreign material on the surface. Flat, circular and
elliptical cylindrical surfaces are examined with similar desorption and reaction rates at the defect sites so as to evaluate the role of surface
curvature on the steady-state behavior of the surface species concentrations. The methodology described here is applicable to generally
curved surfaces referred to general curvilinear coordinates generated numerically to conform with the surface shapes. The continuum
reaction—diffusion models transformed to the general curvilinear coordinates are solved humerically by the line successive-over-relaxation
(SOR) method. Numerical results show that decreasing the surface curvature enhances the chemical process in the presence of surfac
defects. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction faster than diffusion can carry them away. As the particle
size is further enlarged, the catalytic reaction is confined
The subject of heterogeneous catalysis with chemical to the outer layers of the particle and the catalytic activity
reaction kinetics has been of much interest due to its ap-becomes proportional to the external surface of the particle
plicability in space flight structures and in atomic reactors. [2]. In the manufacture of a catalyst pellet with curved sur-
From a practical view point, almost all catalytic reactors faces, surface roughness is necessarily introduced through
contain active surfaces which involve lattice faults and/or surface dislocations, kinks and step defects in the lattice that
foreign material on the surfaces. Though the problem is are required to form a curved surface. The heterogeneous
essentially of molecular origin some very important results chemistry is greatly influenced by the geometrical structure
can be obtained by performing an analysis from a contin- of the catalyst, which may have a vital effect on catalyst
uum view point. The continuum approach was applied by selectivity and the surface defects like kinks, steps and ter-
Grinstein et al. [1] and we refer to their work for the defini- races can influence the catalytic reaction significantly [3—6].
tions of varied terms, the nondimensionalizatoscheme, With surface irregularities or defects playing a major role
and to their results obtained for a flat catalytic surface. in influencing the catalytic activity of the external surface of
In heterogeneous catalysis, the catalyst is commonly the manufactured catalyst particle we designed flat, elliptical
found in the form of a porous grain, ranging from pow- and circular surfaces with surface defects in accordance with
der size to large-sized particles. As the size of the catalystthe method of Grinstein et al. [1]. The existence of surface
particle increases a point is reached at which the catalytic defects usually affects the adsorption and desorption rates of
reaction will produce products in the interior of the grain the surface. The adsorption rates can be designed to vary in
the presence of surface defects by using nominal adsorption
intensitiesy; g in the place of nominal desorption intensities
* Corresponding author. Tek:1-662-325-7293. Bio in Section 2.3 of this work. Letting the presence of the
E-mail address: warsi@ae.msstate.edu (Z.U.A. Warsi). surface defects modify the surface desorption rate only is

1The scheme for nondimensionalization is the same as detailed in [1]. fficient diti t I for the i tigati f th
The only exception is that and n of [1] are denoted as» and g, a sutficient conaition to allow for the investigation o €

respectively. All lengths have been nondimensionalized by usingfi role surface curvature on a global scale plays in the catalytic
as the length scale. activity of the surface.

1385-8947/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
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Nomenclature

Dimensional variables

thermal transfer rate coefficient of the
bulk medium

diffusion coefficient of chemical
speciesD;o expl.—E} /KT |

activation energy for surface adsorption
for chemical species

activation energy for surface diffusion
for chemical species

activation energy for surface desorption
for chemical species

activation energy for reaction on surface
inverse of length scale squared based
on chemical species;o/ (D jou jo)

specific enthalpy of formation of the
reaction product

surface incident mass flux of

chemical species

Boltzmann constant

reaction rate constant;

Ko(n, ¢, &) expl—ERr/KT]

chemical loss rate of species

particle mass of chemical species
surface outward unit normal vector
number density of chemical species
chemical production rate of species
surface incident adsorbed mass flux of
chemical speciesy; J;; (sio = wioJi)

local temperature at the surfac®(no, ¢, &)
bulk temperature

surface concentration of chemical species
fluid velocity vector

diffusion velocity vector of chemical specie
rectangular Cartesian coordinates
desorption rate constant of chemical
speciesy; (no, ¢, &) expl— ESL/KT]
adsorption coefficient of chemical

speciesio expl—Ey’ /KT|

Nondimensional variables

relative surface concentration of
chemical speciesi; /u;o

nondimensional rectangular

Cartesian coordinates

nondimensional desorption rate for
chemical speciesi;oy; (1o, ¢, §)/sio

ratio of length scales squaregs/ f1
normalized activation energy for reaction
on the surfaceEr/(KTo)

normalized activation energy for surface

adsorption for chemical specieE,&") /(KTo)

[

(i)
€p

normalized activation energy for surface
_ diffusion for chemical speciesz’ /(KTo)
eg)s normalized activation energy for surface

desorption for chemical specieEg)S/(kTo)
no surfacen = ng = const on which the
general coordinates atg &

n,C, & general curvilinear coordinates
10 catalyst effectiveness factor
Ki nondimensional reaction rate constant

for chemical speciesKo(no, ¢, &)u jof
(Diofi){(, j) 1 (1,2), (2, D}

T nondimensional surface temperatdvdg
nondimensional specific heat of formation|,
Huiou20K0(no, ¢, §)/(CTo)

Ao surface Beltramian; Eq. (A.7)

v?2 Laplacian

In this paper, we study the steady-state chemical perfor-
mance of active curved surfaces from a continuum point
of view, embedded in a three-dimensional Euclidean space.
As in [1], the active surface is exposed to two chemical
species which adsorb, desorb, diffuse and react on the sur-
face. The heterogeneous surface is modeled through the
inclusion of arbitrarily distributed surface defects. These
defects serve to locally enhance or diminish the processes
of adsorption, desorption, chemical reactivity and heat
transfer. In this regard, refer also to Serri et al. [7], and
Cukier [8].

The main aim of this paper is to investigate the role
of surface curvature on the steady-state chemical perfor-
mance of active catalytic surfaces with surface defects.
In addition to the calculations for flat surfaces as given
in [1], the surfaces of circular and elliptic cylinders are
considered with the same “random” defects. The analysis
technique of this paper is also applicable to surfaces of
arbitrary shapes because of the universal technique of nu-
merical coordinate generation as developed by Thompson
et al. [9], and Warsi [10]. The main idea here is to gener-
ate the coordinates in arbitrary surfaces through a system
of partial differential equations as reported in [10] and
then solve the transformed diffusion—reaction equations on
these coordinates. The resulting equations have been solved
numerically by the line successive-over-relaxation (SOR)
method.

To clearly see the effects of curvature on the products
of the physicochemical processes, the fluid velocity was set
to zero. Also for simplicity, it has been assumed that the
resultant product molecules of reaction desorb immediately
after their production. From the comparison of the results
discussed in Section 3, we see that in the presence of surface
defects the curvature of the catalytic surface enhances the
activity of reaction.
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2. Analysis

From an analytic continuum standpoint, surface kinetic
phenomenon is described by the continuity equations for the N1
species and the total energy equation. Referring to Oran and

Boris [11], the continuity equation of th¢h species is

on; . .

8—; + div(n;V) + div(nivgi) = Qi — Lin;
wheren; is the number density of thi¢h species. Denoting
by m; the molecular or particle mass of tita species, the
equation for the concentratian = n;m; is obtained from
Eqg. (1a) as

(1a)

u; . .
? + div(u;Vv) + div(u;Vgi) = Qim; — L;u;

The total energy equation is

(1b)

83_];5 + div(EY) — div(T - v) + divg+ g)
=V Zm,-fi + ZVdimifr 2)

whereT is the Stokes’ stress tensor afdthe body force
vector per unit mass associated with ttiespecies.

Sincey; is the concentration, the diffusion velocity; is
proportional to the gradient af;. On dimensional consid-
eration, the relation betwean; andu; is

uiVgi = —D; gradu; €))

For steady-state and in the absence of fluid flow while using
Eqg. (3) in Eqg. (1b), the conservation equation simplifies to

div(D; gradui) + Qim; — Liju; =0 (4a)
or
DiVZui + (gradD;) - (gradu;) + Q;m; — L;ju; =0  (4b)

the gradient operators. Thus, in Egs. (6) and (7) replacing
V2 by f; V2 and grad by,/f1 grad, we get
D;V?u; + fi(gradD;) - (gradu;)
=Liu; — Qim;; i=12
Using
u; —8(i)
v = —, D; = Djo EXP(—D>
u;o T

we get
2 Q) 1
Ve =¢p’ grad - - gradv;

+exp ﬁ (Liujov; — Q;m;) (8)
€ SfiuioDio

wherei = 1, 2. Transforming the Laplacian and the gradient
to general coordinates n, ¢ (refer to Appendix A), taking
n as the normal coordinate on the surface ng = const,
and then evaluating each term of Eq. (8) on the surface, we
get the following two equations:

Atn=no

9%, 1 8G28v1>

@ 1
Aovy = rad{ — ) - gradvi— | —+——
211=¢p @ (r) g v1 <8n2+2G2 an an

D D
L .
+ 1 exp i v — ﬂexp i
fiD1o T fiu10D10 T
)
2

@ 1 d4v2 1 9Goove
Agvp = rad{ — | - gradvo— | —+——
2012=¢p g <r> gradvy <3772+2G2 an on

(2

Ly Qom > €p
+ V) — ¥ ——— ) exp| — 10
(lezo 2 szDzouzo p[ T (10)

body force terms, the energy equation, Eq. (2), reduces to the expressions fon,vi, Aov, are as given in Eq. (A.7),

divg=0 ®)

At this stage, it must be noted that the Laplacighappear-
ing in Eq. (4b) is in general three-dimensional, i.e.

V2 = dyx + dyy + 92z

whereX, Y, Z are the rectangular Cartesian coordinates.

and y = f2/f1. It must be noted that the second terms on
the right hand sides of Egs. (9) and (10) are formed of the
normal derivatives ob1 and vz at the surface and they, in
general, are not zero. In the following, we have merged these
terms in the modeling of the terms on the right hand side to
coincide with the form of the equations as those given in [1].

The purpose of this paper is to compute the concentration2-1. Modeling

functionsu; on a curved surface. As in [1], we take two

species so that the two equations from Eq. (4b) are
D1V2u1 + (gradDy) - (gradus) + Qum1 — Liugz =0 (6)

D2V2u2 + (gradD2) - (graduz) + Qomo — Louz =0 (7)

We now nondimensionalize Egs. (6) and (7) by following the
scheme used by Grinstein et al. (refer to Nomenclature) but Lo
for simplicity keep the same notation for the Laplacian and f1D20

At the surfacen = ng, we have modeled the terms to be
consistent from a physical standpoint as follows:

L1 —&R —81(31%
= K1v2 €XpP - + Brexp

fiD1o T (112)

3 @
= Kov1 exp[?} + xB2 exp[ SDS} (11b)

T
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01 (a%l 1 3G au1> ox —
Sfiu10D10 an?>  2Gz dn 0ny Pl
0
= exp| —2- | exp(—v1) (11c)
X Qomo + 821)2 1 0Go0v2 ox —€|(32)
f2Daou20 an?  2Gp In 0y Pl
—8(2)
=y exp| —2— | exp(—v2) (11d)

Substitution of the modeled terms (11) in Egs. (9) and (10)
yield the equations

1
Aoy = grad(—) - gradvy
T

(1) [¢)) [¢))
En —¢ & — &
+K1 EXDLMJ V1V — exp|:D—A:|
T T
1 1
O - )

X {eX[X—Ul) — B1n1 exp[@f

2

D
2 2

£ — &
+ ko EXP L( D D A

Aosvo =¢ grad<}> - gradv;
T

——— | viv2) EXp
T
@)

(ex) — 853)
X { exp(—v2)—B2v2 €Xp — (13)

Further, assuming no defects at the boundaries of the
catalytic surface, we impose the constant flux boundary
conditions

Av1 =0, A =0 (14)

at the boundaries. We now model the heat flux veqtaes
g = —kgradT + p HVyj

wherek is the conductivity (J/m s K}l the heat of formation
per unit mass (J/kg), angd= man3 the density of the species
generated leaving the surface. Thus, taking

kV2T = C(T — Tp) (15a)
and
div(p Hvgi) = KHuqu» (15b)

the energy equation, Eg. (5), yields a nondimensional alge-
braic equation

wv1vp expL_TmJ —(t-1)=0 (16)
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For brevity denoting the right-hand side terms of Egs. (12)
and (13) byR; andR;, we have

Azv1 = Ry
Ao2v2 = Ro

Using the expression for the Beltramian's Eq. (A.7) with
Az¢ =0 andAx¢ =0, we have

811V1cc — 2813v1ce + g33vize = G2R1 (17a)

811V2c¢ — 2813v2r + 833v2ee = G2R2 (17b)

where a variable subscript denotes a partial derivative. It
must be stated here that the Beltramian of the coordinates,
viz. At and A€ are the coordinate control functions (for
details, refer to [10]) and they are completely user specified
functions to attain a desired distribution of coordinates in
a given surface. The coordinate generating equations [10]
with A>¢ = 0 andA»¢é = 0 are given in vector form as

811lc¢c — 28130¢e + g33lee = Ga(ky + ki)n (18)

wherer = (x, y, x) andk; + k| is the sum of the principal
curvatures at a point on the surface. If the equation of the
surface is given a#'(x, y,x) = 0 then the sunk; + kj

can be expressed as a functionfy, z (refer to [10]

for details.) Thus, Eq. (18) forms a set of three coupled
simultaneous quasilinear equations for the determination
of the coordinatesr(¢, &) (x(¢,8),(¢,8),2(¢, 8)).

For simply connected domains, only the boundary data
ro, &), 151, 6),1(¢, §0), 1 (¢, §1) (Wherego < ¢ < ¢1 and

&0 < &€ < &) are needed, which are the Dirichlet boundary
conditions. It must be noted that one does not have to pre-
scribe the parametric valuew, ¢1, £0, and&1, since the
solution of Eq. (18) is essentially expressed in the logical
or integer space agk, I).

2.2. Numerical methodology

The first step in the numerical implementation is to solve
Eqg. (18) forr(K, 1) when the surface has been specified.
Noting that

811 = xgz + ygz + Zgz, 813 = XgX¢ + Ye Y + 2£2¢,
833 = xf + yf + z§, G2 = g11833 — (213)°

we approximate Eq. (18) by using the central difference ap-
proximation for both the first and the second partial deriva-
tives with respect tag and &. Using integerK and | for
¢ andg, respectively, the SOR method to solve the system
of equations implies that for any dependent variable=

('xf y’ Z)y
K D=0 P (K, T)+1-o)wP VK, 1) (19a)

wherew is the acceleration parametédr< o < 2) andpthe
iteration counter. The values &f are obtained by solving
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Fig. 1. Generated coordinate curves on the upper half of a circular cylinder.

the tridiagonal system according to the requirement of constant flux boundary con-
. . ditions (Eq. (14)).
EVP(K, I)+BIP (K +1,1)+ AvP (K —1,1)

=—F(K,I)-C¥P(K,1-1) 2.3. Modeling of the defect functions
—pw P V(K 1+1) (19b)

The nondimensional desorption rate for chemical species
where the coefficientg, B, A, etc. depend on the values of  g; are dependent on the desorption coefficientashich are
the dependent variables, .y, z as available from the  considered to be functions of the surface coordinates, i.e.
previous iteration. Figs. 1 and 2 show the coordinate lines (¢, £). The desorption defect functiong (¢, &) should
andé on a circular cylinder of radius 1 and elliptic cylinder  either be specified or modeled. Following the formulation
of semi major and semi minor axes 2:1, respectively. of [1], the desorption defect functions; (¢, £) have been

For each geometry, the values of1(K, 1), gia(K, 1), modeled as follows:
g33(K, 1) andG(K, 1), are stored in a data file. These values

are then used in solving Eq. (17) by using the same algo- 1 )
rithm. The boundary values for solving Eg. (17) are obtained Bi (£, &) = Bio ZD./(C, |, =12 (20)
by solving the nonlinear algebraic systdgtn = 0, R» =0 j=1

Fig. 2. Generated coordinate curves on the upper half of an elliptic cylinder.
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Table 1

Parameters defining the defect functidds

] ¢j £ o 8j 0; ()
1 0.7727 0.5909 0.0625 0.2650 135
2 0.4773 1.4091 0.0625 0.0156 90
3 0.9773 1.1591 0.0625 0.0880 45
4 1.4545 0.7726 0.0625 0.2500 90

where ;o are constants specifying the nominal desorption
intensities and is the number of surface defects. For demon-
stration, we have taken = 4 and selectegg1p = 3 and
B20 = 10. Then defect functiondd; have been taken as

1 %\*

J

where
¢f = (¢ = &) cost; + (£ — &) sing; (1)
§ = —(& —¢j)sing; + (5 — &) cosy
w(g“JQ, o}, Sj)=exp{— [(;?—Sj)/oj}zJ ; Cjozaj
=1; —8j<§jp <J;

2
= eXpL— {(C}) + 51)/0./} J ; C,Q = =94

Fig. 3. Distribution of the desorption defect functiga (refer to Section
2.3).

Section 2.3 so that in each case the same distribution of ran-

Each surface defect is modeled for maximum trapping at qom defects as function of the generated coordinates was

the core where the center of the “line defect” is at the point
(¢, &) and its orientation with respect to tijecoordinate
line is given by the anglé ;. Each defect is prescribed by a
width and a length parameter; andé;, respectively. The
values of the parametess;, § ;, andd ; used in the modeling
are given in Table 1.

Based on the preceding modeling the defect functions

B1(¢, &) and B2(¢, &) used on all surfaces are shown in

Figs. 3 and 4. It must be mentioned here that the parameteric

values of; and& appearing in Eq. (20) have been taken as

-1

_, (K-
(Lmax - 1)

T

where

. &=

1< K<Kmax 1 <1 < Lmax, and Kmax=45, Lmax = 45.

3. Discussion of numerical results

used. For simplicity, the temperature dependent effects were
neglected and an isotropic reaction rate constant was cho-
sen. Further, the diffusion and adsorption coefficients were
taken as constants. Thus, the following data was chosen to

To understand the effect of surface curvature on the
steady-state chemical concentrations produced on surfaces
with low surface coverages, we have solved the nondimen-
sional Egs. (12) and (13) on flat, circular, and elliptical ¢ AA
surfaces. In all cases, the surfaces were subjected to the

same heterogenous chemical environment. The desorptiverig. 4. pistribution of the desorption defect functiga (refer to Section

properties of each surface was modeled as discussed irp.3).
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calculate the concentration functiong and v, on all sur-
faces.

=1 ¢er=0, eg)zsg)szO

Bro=30, fo=100, «1=rxp=2000

x=100, H—o »_190 Dxo_,
Y1 3 D1o

s2 10uz0

s1 o

Figs. 5—7 illustrate the results obtained for the concentra-
tions v1, vz andkovivz. A comparative summary afz, vy,
andkovyvo for various surfaces is given in Tables 2—-4. The
tables provide the change of the maximum and minimum
values as compared to the flat surface as a reference sur-
face of curvaturec. From Tables 2—4, we conclude that the
maximum concentratiom; increases by about 8% and the
minimum concentratiom; decreases by about 7.2% for the
cylindrical surfaces in comparison to the flat surface.

The general theory of chemical reactor analysis and
design of heterogeneous catalytic systems relies on the

.0043

a. Flat Surface : Exposed Area 4

7-0059

.0041

i

b. Elliptical Surface :

(Semi major axis - 1. Semi minor axis -0.5)

Exposed Area 3.162 pi

\&\ ) .

- -0059
- v‘
4 .0039
ol 1
c¢. Cylindrical Surface : (Radius -1)

Exposed Area 2 pi

Fig. 5. Concentration profiles af; for various surfaces (refer to data in Section 4).
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.1286

.0823

a. Flat Surface : Exposed Area 4

L1341
\%
2
.0823
b. Elliptical Surface : (Semi major axis - 1. Semi minor axis -0.5)
Exposed Area 3.162 pi
.1390
i)
.0823

c. Cylindrical Surface : (Radius -1)
Exposed Area 2 pi

Fig. 6. Concentration profiles af, for various surfaces (refer to data in Section 4).

catalyst effectiveness factgr. In this regard, see Paterson reactors do not operate where the intrinsic kinetics are appli-
and Creswell [12], and Ramachandran et al. [13]. cable. Thep approach satisfies the need for estimating the
actual reaction rates given the intrinsic kinetics and operat-
ing conditions within the reactor. Many chemical reactors

use packed beds of catalyst particles, hencegptfactor is

In practice, knowledge ofy at every point of a reactor also used to define the net chemical activity of a catalyst par-
is vital to its analysis and design because most chemicalticle. From Tables 2—4, we see that a catalyst surface with

_ actual reaction rate
~ rate as predicted by intrinsic kinetics
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1.1175
K,y v,
. 9498
a. Flat Surface : Exposed Area 4
[ 1.1223
& K V]V
4 . . \ i .4 - 9469
277 0
3

b. Elliptical Surface : (Semi major axis - 1. Semi minor axis -0.5)
Exposed Area 3.162 pi

1.1233
A

. 9449

c¢. Cylindrical Surface : (Radius -1)
Exposed Area 2 pi

Fig. 7. Concentration profiles dfvyv, for various surfaces (refer to data in Section 4).

Table 2
Maximum and minimum concentration valuesaf and their location on the surfate

49

Surface Maximum Minimum (v1)max — (V1) min
¢ orK Eorl v1 ¢ orK Eorl v1 Avg

Flat 1 1 0.00592895 14 18 0.00430282 0.00162613

Elliptical 41 42 0.00592917 15 17 0.00413956 0.00178960

Circular 4 3 0.00592950 13 14 0.00399391 0.00193559

8k = k1 = 20000, B1o = 3.0, 20 =100, x = 100, T = 1.
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Table 3

Maximum and minimum concentration values@f and their location on the surfate

Surface Maximum Minimum (2)max — (V2)min
¢ orK Eorl v2 ¢ orK Eorl v2 Avy

Flat 18 33 0.1286840 1 1 0.08233350 0.0463505

Elliptical 14 18 0.1341670 43 39 0.08233320 0.0518338

Circular 14 18 0.1390320 2 4 0.08233280 0.0566992

81 = k2 = 20000, B1o = 3.0, B20 =100, x =100, z = 1.

Table 4

Maximum and minimum concentration values /ofv;vo, and their location on the surfate

Surface Maximum Minimum (k2V1V2)max — (K2V1V2)min
¢ orK Eorl K2V1V2 ¢ orK g orl K2U1V2 A(kov102)

Flat 27 23 1.117560 19 21 0.9498360 0.167724

Elliptical 27 23 1.122250 16 18 0.9469120 0.175838

Circular 27 23 1.123290 15 28 0.9449950 0.178295

341 = kp = 20000, B10 = 3.0, B0 = 10.0, x = 100, 7 = 1.

finite curvature versus a flat surface has an enhanced chemcollege of Engineering, Mississippi State University. This
ical activity contribution component due solely to the pres- fund was generously provided as a grant from the Robert
ence of surface curvature. If the surface curvature contribu- M. Hearin Foundation, Mr. Matt Holleman Trustee.

tions to the catalyst surface activity is small when compared

to the contribution of the surface irregularities, we can say

with confidence that the contribution of surface curvature to Appendix A. Laplacian in E2 and its evaluation

the evaluation ofyp can be neglected. on a surface

Letx’ be a general coordinate systems. Referring to Warsi
[14], the Laplacian of a functiop in terms of the coordinates
X' is given as

4, Conclusions

This paper describes the steady-state chemical perfor-
mance of curved catalytic surfaces which are exposed to two i (9% , g
species. The two main achievements of this paper are: (i)V $=8 <3xiaxj A axr)
surfaces of arbitrary shapes can be considered. This aspect
is important both from practical and theoretical view points. where repeated indices imply summation from 1 to 3. Writ-
The coordinates in the generally curved surfaces are firsting x* = &, x2 = 5, x3 = ¢ and denoting the partial deriva-
generated numerically, and then the transformed conservadlives by variable subscripts, we have
tion equations are solved using the generated coordinates. It
must be emphasized here that even in the two curved surface€ V>0 = G1¢zz + Gogny + Gapcr + 2Gapey + 2Gspe;
considered in this paper, viz., circular.ar.ld eIIiptipaI cylin- +2Gepy: — Gl(Ffl‘ﬁs + p121¢n + F131‘Pc)
ders, rather than using the polar or elliptic coordinates, the 1 5 3
coordinates were generated numerically as shown in Figs. 1 — Gal 5595 + 1550 + I5200)
and 2; (i) it has been found that for a given set of defects — G3(Tgzps + Tipy + Tinpr)
the species concentrations on a curved surface are enhanced — 2G4(Iiope + Topy + T'pc)
over its flat surface counterpart. With the normalized species 1 5 3
concentrations for the different surfaces being of the same —2Gs(I'igps + I'igpy + I'izec)
order of magnitude, all the digits are significant from the — 2G6(Igape + Tispn + Tape) (A.2)
point of view that the evidence of the surface curvature af-

fecting the catalytic activity is noted in the thousandths or Wherelj are the Christoffel symbols of the second kind and
smaller decimal place value. are available in fully expanded form in [14]. Furthgy; are

the covariant metric coefficientg,= det(gj;) and

(A1)
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Consider a surfac& embedded irE® and defined by; =

no = const, on which the current coordinates areandé.

Thus, the functionp at Sis a function of¢ and& but, in
general, the derivative af with respect ta; at n = ng are
not zero. Without any loss of generality we takeand &

as a general coordinate system in the surfaceraad the
transverse straight normal to the surface. TRYs—= g23 =

0 andgy2 = 1. With this choice of coordinates

G1=g33, G2 = g11833 — (13)°, G3 = g1,
G4=0, Gs = —g13, Gg =0,
g = g11833 — (g13)° (A.4)
Thus, Eg. (A.2) evaluated at= g gives
1 0G2
v2 ‘ = Ao+ + = A5
0|,y = 42000l + 56 an 1|, (A.5)

where A,¢ is the Beltramian ofp and Az is a surface op-
erator defined as
82

9
— B _yd -
Ay =g (8x°‘8xﬂ Yop 8x‘3) (A.6)

where the Greek indices assume values 1 and 3, with re-

peated indices implying summation, arigl, are the surface
Christoffel symbols, cf. Warsi [10,14]. Operating Eq. (A.6)

on ¢, we have

1
Azp = G—z(gllw;c — 2813ps¢ + 833¢s¢)

+(A20) @ + (A28) e (A.7)

References

[1] F.F. Grinstein, H. Rabitz, A. Askar, J. Chem. Phys. 82 (1985) 3430.

[2] E.W. Thiele, Ind. Eng. Chem. 31 (7) 916-920.

[3] H. Hopster, H. Ibach, Surf. Sci. 77 (1978) 109.

[4] M.R. McClellan, J.L. Gland, F.R. McFeeley, Surf. Sci. 112 (1981)
63.

[5] G.A. Somorjai, Surf. Sci. 299/300 (1994) 849-866.

[6] C.K. Lee, S.L. Lee, Surf. Sci. 339 (1995) 171-181.

[7] J.A. Serri, J.C. Tully, M.J. Cardillo, J. Chem. Phys. 79 (1983) 1530.

[8] R.I. Cukier, J. Chem. Phys. 79 (1983) 2430.

[9] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin, Numerical
Grid Generation: Foundations and Applications, North-Holland,
Amsterdam, 1985.

[10] Z.U.A. Warsi, J. Comput. Phys. 64 (1986) 82.

[11] E.S. Oran, J.P. Boris, Numerical Simulation of Reactive Flow,
Elsevier Science, New York, 1987.

[12] W.R. Paterson, D.L. Creswell, Chem. Eng. Sci. 26 (1971) 605-616.

[13] P.A. Ramachandran, E.K.T. Kam, R. Hughes, Chem. Eng. Sci. 31
(1976) 244-247.

[14] Z.U.A. Warsi, Fluid Dynamics: Theoretical and Computational
Approaches, 2nd Edition, CRC Press, Boca Raton, FL, 1998.



	Effect of catalytic surface curvature on the chemical performance with defect structures
	Introduction
	Analysis
	Modeling
	Numerical methodology
	Modeling of the defect functions

	Discussion of numerical results
	Conclusions
	Acknowledgements
	Laplacian in E3 and its evaluation on a surface

	References


